Pushing Tougher Constraints in Frequent Pattern Mining

نویسندگان

  • Francesco Bonchi
  • Claudio Lucchese
چکیده

In this paper we extend the state-of-art of the constraints that can be pushed in a frequent pattern computation. We introduce a new class of tough constraints, namely Loose Anti-monotone constraints, and we deeply characterize them by showing that they are a superclass of convertible anti-monotone constraints (e.g. constraints on average or median) and that they model tougher constraints (e.g. constraints on variance or standard deviation). Then we show how these constraints can be exploited in a level-wise Apriori-like computation by means of a new data-reduction technique: the resulting algorithm outperforms previous proposals for convertible constraints, and it is to treat much tougher constraints with the same effectiveness of easier ones.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preference-Based Frequent Pattern Mining

Frequent pattern mining is an important data mining problem with broad applications. Although there are many in-depth studies on efficient frequent pattern mining algorithms and constraint pushing techniques, the effectiveness of frequent pattern mining remains a serious concern: it is non-trivial and often tricky to specify appropriate support thresholds and proper constraints. In this paper, ...

متن کامل

ExAnte: Anticipated Data Reduction in Constrained Pattern Mining

Constraint pushing techniques have been proven to be effective in reducing the search space in the frequent pattern mining task, and thus in improving efficiency. But while pushing anti-monotone constraints in a level-wise computation of frequent itemsets has been recognized to be always profitable, the case is different for monotone constraints. In fact, monotone constraints have been consider...

متن کامل

Extending the state-of-the-art of constraint-based pattern discovery

The constraint-based pattern discovery paradigm was introduced with the aim of providing to the user a tool to drive the discovery process towards potentially interesting patterns, with the positive side effect of achieving a more efficient computation. In this paper we review and extend the state-of-the-art of the constraints that can be pushed in a frequent pattern computation. We introduce n...

متن کامل

Pre-processing for Constrained Pattern Mining

Constraint pushing techniques have been proven to be effective in reducing the search space in the frequent pattern mining task, and thus in improving efficiency. But while pushing anti-monotone constraints in a level-wise computation of frequent itemsets has been recognized to be always profitable, the case is different for monotone constraints. In fact, monotone constraints have been consider...

متن کامل

Adaptive Constraint Pushing in Frequent Pattern Mining

Pushing monotone constraints in frequent pattern mining can help pruning the search space, but at the same time it can also reduce the effectiveness of anti-monotone pruning. There is a clear tradeoff. Is it better to exploit more monotone pruning at the cost of less antimonotone pruning, or viceversa? The answer depends on characteristics of the dataset and the selectivity of constraints. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005